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Abstract Equations for the transition probability of
non-adiabatic electron transfer are derived which take
into account both the effect of reorganization of “‘non-
symmetric” classical or quantum vibrational modes and
the effects which are due to the dependence of the elec-
tron matrix element on the normal coordinates of
“promoting” vibrational modes. Any number of vibra-
tional modes with an arbitrary frequency spectrum are
incorporated in a simple manner. The results are repre-
sented in a simple form convenient for the analysis of
the dependence of the transition probability on the
temperature, transfer distance, and driving force.

Keywords Non-adiabatic transitions - Promoting
modes - Free energy relationships

Introduction

It is known that the effects of fluctuational preparation
of the potential barrier for a tunneling particle may be of
importance to charge transfer processes in condensed
media. The physical meaning of this effect consists of the
fact that the matrix element V'pa coupling the initial (at
the donor site D) and final (at the acceptor site A) states
of the tunneling particle may depend significantly on the
coordinates ¢ of the environmental vibrational modes [1,
2,3,4,5, 6]. In view of the large number of works in this
field, and in order to make the aim of the present paper
clear, some points giving background on this topic are
now presented.
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First, two different physical situations can be distin-
guished. The first one corresponds to the case where the
tunneling particle interacts with the vibrational modes
that undergo reorganization in the course of the transi-
tion (the so called ‘“non-symmetric” modes). In the
classical limit, the configuration of these nuclear modes
at the top of the barrier separating the initial and final
states along the optimum path is called the “transitional
configuration”. In the Condon approximation the
transitional configuration coincides with the saddle
point at the crossing of the diabatic free energy surfaces.
The dependence of the electron matrix element on the
coordinates of the non-symmetric vibrational modes
may lead to a violation of the Condon approximation.
This means that the electron matrix element participates
in the competition for the transitional configuration.
Non-Condon effects of this sort have been broadly
investigated theoretically [1, 2, 3, 4, 5, 6] (see also [7] and
references therein).

A second situation corresponds to the case where the
tunneling particle interacts with the atoms whose equi-
librium positions remain unchanged after the transition.
Vibrational modes of this sort are called “promoting”
[7]. In the absence of the above interaction, the pro-
moting modes do not participate in the transition at all.
However, if this interaction exists, these modes can sig-
nificantly affect the transition probability, even in the
absence of the non-Condon effects mentioned earlier.

Another situation of this type arises in particular
when the tunneling is to some extent blocked by atoms
of the molecular environment. A fluctuational shift of
the atoms from their equilibrium positions then opens
the “gate” for the transition. In this interpretation, the
effect of these modes on the transition probability may
be called “‘gating™, as a particular case of a broader class
of gating phenomena (which are out of the scope of the
present paper). This situation is typical of the tunnel
transfer of light atoms and defects in solids, and has
been considered in detail with due account given to
various effects in both low-temperature and classical
limits [8, 9, 10] (for a general approach see [7]). A similar
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effect has been discussed for biological processes of atom
transfer [11, 12] and for electrochemical proton transfer
in clathrates [13]. In fact, the same qualitative physical
consequences also emerge for so-called distance-depen-
dent tunneling [14].

The effect of the promoting modes on the transition
probability has been mainly investigated for the transfer
of atoms and atomic groups and is much less studied for
electron transfer processes. The reason for this is that
electron wave functions are much more delocalized and
less sensitive to the fluctuations of the molecular envi-
ronment. Therefore the effects under discussion may be
insignificant in short-range electron transfer. The situa-
tion is different for long-distance electron transfer,
where the overlaps of the electron wave functions occur
at the tails of the electron densities, and even minor
variations in the wave functions’ decay can significantly
affect the electron matrix element.

Electron transfer to long distances may occur in
artificially organized molecular ensembles like adsorbed
films and molecular layers [15, 16]. This is also a rather
common phenomenon in biological macromolecules (see
for example [17]). The preparation ‘“of the favorable
activation barrier for electron transfer through a well
adjusted transient change of the intervening protein
structure” is considered to be a possible mechanism for
the acceleration of the reaction [18]. However, the
change in the protein structure may also produce an
effect on the barrier for the electron tunneling. It is as-
sumed that electron transfer in such systems is facilitated
by intermediate bridge groups. The participation of
high- and low-lying molecular orbitals of these groups in
the process is usually considered [7, 19, 20, 21, 22]. The
only paper where the effect of promoting modes was
discussed in relation to long-distance electron transfer in
biological systems is [23], where some simple models of
electron coupling with the protein “promoting” modes
were considered (such as the exponential dependence of
the electron matrix element on oscillator normal coor-
dinates, neglecting the frequency dispersion). It was
found in particular that this effect leads to a distortion of
the shape of the rate constant versus driving force
dependence, and a shift in its maximum. A similar effect
was observed in our earlier work [24] on electron
transfer in polar media. We refer the reader to [23] (and
many references therein) for a detailed discussion of the
relationship between the effects under investigation and
other numerous theoretical works on non-Condon
effects. The method used in [23] is rather complicated
(although general) and requires considerable simplifying
assumptions in some important models. At the same
time another general approach exists [7], which allows
for some approximations to be relaxed.

The goal of this paper is to elaborate rather general
and simple equations for the description of the effect of
promoting modes in long-distance electron transfer.
They are convenient for both analytical and numerical
calculations, and can serve as a framework for the
treatment of experimental data. The treatment suggested

is equally applicable to eclectron transfer processes in
liquid and solid environments, as well as in biological
macromolecules.

General relationships

A non-adiabatic electron transfer between a donor D
and acceptor A mediated by bridge groups B is consid-
ered below. It is assumed that the electron orbitals of the
bridge groups correspond to the superexchange situa-
tion. The electron transfer through dynamically popu-
lated intermediate states requires a different treatment
and will be considered elsewhere.

The non-adiabatic character of the reaction implies
that it is rather slow, so that the equilibrium distribution
for all vibrational modes is maintained in the initial
state. This means that both non-symmetric and pro-
moting modes are considered on the same footing.

The transition probability for the non-adiabatic
reaction may be written as follows [7]:
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where Vpa(g) is the effective electron matrix element
(assumed to be a real quantity) coupling the donor and
acceptor states, p; and py are the vibrational density
matrices calculated at the effective temperatures
T/(1-0) and T/0, respectively, Z; is the statistical sum
of the initial state, the integration is performed over the
dimensionless normal coordinates of vibrational modes
q and over 0 (along a contour parallel to imaginary
axis).

The often-used Condon approximation means that
the dependence of V'pa(g) on the vibrational coordinates
q is ignored. Our aim below is opposite. We want to
estimate the effects arising from to the dependence of
Vpa(g) on some of the g-coordinates — on the coordi-
nates of the “promoting” modes ¢.

A significant effect may be expected in the case of a
strong g-dependence of Vpa(g), such as of the type

Vba(gs) = Vpa exp [—B(gs)] (2)
with a linear
1
B(gs) =5 Idsk (3)
k

or a stronger dependence of the function B(gs) on gs.

For the sake of definiteness we shall accept the
exponential dependence of Egs. 2 and 3 where the cou-
pling constants y, may depend on the transfer distance
R. In this model some further transformations may be
performed exactly.

Introducing the new variables (¢ + ¢’)/2 and g—¢’ into
Eq. 1 and integrating over ¢g—¢’ we obtain
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where ®;(q;1—0) and ®gq;0) are the diagonal matrix
elements of the density matrices (the quantum distribu-
tion functions) and A4(g) is a “width” arising after the
integration over g—¢q’. For the model of harmonic
vibrations with unchanged frequencies these have the
form
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where ¢yo; and gyor are the equilibrium values of the
normal coordinates of the “non-symmetric” modes, and
those for the “promoting” modes are assumed to be
zero, ¢% = ¢ = 0.

Equation 4 may be handled using various models and
approximations. For example, rather general forms can
be obtained in the high-temperature (classical) limit for
the vibrational subsystem [7]. However, in order to be
able to take into account possible quantum effects, we
shall accept the model of harmonic vibrations below.

Model of harmonic vibrations

It will be assumed that the vibrational subsystem may be
described as a set of harmonic oscillators of frequencies
wg (for “promoting” modes) and w; (for “non-sym-
metric” modes). The electron transfer results in the
reorganization of the ‘“‘non-symmetric” modes with
reorganization energies E,. The total reorganization
energy of the classical “non-symmetric”” modes will be
denoted as E..

In this model, the integration over vibrational coor-
dinates is straightforward, with due account of Egs. 2, 3,
5-7 resulting in
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where ff=1/kgT, and AF is the free energy of the tran-
sition (driving force),
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and the summation is performed over all “promoting”
(sk) and ““non-symmetric’’(l) modes.

Equations 8 and 9 differ from those of the ordinary
electron transfer theory by the presence of the last term
in Eq. 9, which is responsible for the modulation of the
tunnel barrier, and are reduced to the latter at y, =0.
The effect of promoting modes results in an increase in
the transition probability.

If the reorganization energy of the classical vibra-
tional modes F; is sufficiently large (E;> >kgT), the
integral over 0 may be calculated by the saddle point
method, which gives

sinh
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where o is determined by Eq. 11:
dH (o)
AF = Iy (11)

Equations 10 and 11 together with Eq. 9 for H(0)
(0=ua) give a parametric dependence of the transition
probability on the driving force with the symmetry fac-
tor o playing the role of running variable [25]. Although
these equations allow us to handle the systems with an
arbitrary number of modes straightforwardly, a simple
illustrative example will be considered below.

Effect of single promoting mode

In order to reveal the effect of the barrier fluctuations,
one “promoting” bridge mode with frequency w, (and
zero reorganization energy) is considered below, along
with a set of classical environmental non-symmetric
vibrational modes and one non-classical local mode
with reorganization energies Eg and E,; respectively. In
the analysis of this effect, only its absolute value was
usually estimated. The driving force dependence of
the effect was first incorporated in [13] for the low-
temperature hydrogen evolution from clathrates and in
[23] for electron transfer. Below we shall illustrate this
dependence in the model under consideration using the
equations derived above. Equation 11 then takes the
form
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In the absence of coupling with the promoting modes
(y=0) and at E,;=0 this equation gives a known
dependence of the symmetry factor on the driving force

(Fig. 1)

oz—l 1+A—F
2 E,

The effect of the barrier preparation is different
depending on the vibrational frequency of the ‘“‘pro-
moting” mode. For low-frequency “promoting” modes
(hows<kgT) its effect reduces to a shift in the reorgani-
zation energy

(13)

2h )
E, — E, 4+ 19

(14)

In view of the condition Zws<kgT, this correction
to E is usually small and the shape of the dependence
of the transition probability on the driving force re-
mains practically unchanged. However, the effect on
the transition probability may still be considerable
(Fig. 2) depending on the values of the coupling con-
stant 7.

In the case of high-frequency ‘“‘promoting” modes
(hws>kgT), the dependence of o on AF is considerably
modified in the region near «~0 (Fig. 1). This fact is also
reflected in the dependence of log Wpa on AF, resulting
in a shift of the maximum and a broadening of the curve
(Fig. 3). In this respect the effect of the promoting mode
is similar to that from high-frequency non-symmetric
modes (see the second term in the right-hand side of
Eq. 9). The difference is that the reorganization of the
latter results in a decrease of the transition probability,
whereas the fluctuations along the promoting mode lead
to the increase in the transition probability (see curves 2
and 3 in Fig. 3).

Discussion and concluding remarks

The main new results of the present paper are
Egs. 911 for the transition probability of electron
transfer, taking into account both the effect of reor-
ganization of ‘“‘non-symmetric”’ classical or quantum
vibrational modes and the effect of preparation of the
tunnel barrier due to the dependence of the electron
matrix element on the normal coordinates of “‘pro-
moting” vibrational modes. These equations obtained
in the model of harmonic vibrations represent simple
forms, which are convenient for the analysis of the
dependence of the transition probability on the tem-
perature, transfer distance, and driving force. The
driving force dependence may be easily calculated with
the use of standard programs available for PCs as a
parametric plot of the type

Woa = f(a); AF = ¢(o) (15)

with the symmetry factor o as running variable. It
should be emphasized that any number of vibrational
modes with arbitrary frequencies are incorporated in a
simple manner (as a one-fold summation) without con-
siderable increase in the computing time. This is an
advantage over some other forms (see [23] for instance)
where the incorporation of additional modes is per-
formed by cumbersome calculations of the multiple
sums of the products of several functions, or requires
considerable simplifying approximations. The only
restriction for the results obtained here is the assumption
of sufficiently large reorganization energy for the clas-
sical vibrational modes (see inequality above Eq. 10).
More generally, Eq. 4 may be used for calculations in
other models and in other various limiting cases. We
refer to a general approach in [7].
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Fig. 2 The dependence of the 24
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The most direct effect of the barrier preparation is the
increase in the transition probability, which depends on
the coupling constants y,. Another one consists of the
shift of the maximum in the log Wpa versus AF
dependence and an increase in its width. It should be
emphasized that the latter effect is due to the fact that
the coupling of the electron tunneling with the fluctua-
tions of the promoting modes allows for the dependence
of the tunnel probability on the driving force of the
transition, which is entirely absent in traditional electron
transfer theory [26]. This could be a possible reason for
some observed phenomena of electron transfer in bio-
logical systems. In particular, this may be of relevance to
the reported data on the charge recombination from the

AF/K,T

primary quinone to the bacteriochlorophyll dimer of the
reaction center from the photosynthetic purple bacte-
rium Rhodobacter sphaeroides [27]. Various mutants
were used to study the driving force dependence of the
reaction rate constant at different temperatures. A slight
increase of the reaction rate constant with a decrease in
the temperature, and a considerable driving force
dependence (with a practically absent inverted region)
were observed. In order to fit the experimental data by
the traditional Marcus theory, two different assumptions
were invoked: either a strong temperature dependence of
the environmental reorganization energy and coupling
with an additional non-symmetric high-frequency mode,
or temperature dependence of the reorganization energy
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Fig. 4 Temperature and driving 7r
force dependence of the L
transition probability. Curve 1:
ES/kBT: 6, El :0, h(!)l/szT: 1,
howg2kgT=3, y=0, T=300 K; r
curve 2: 6,0, 1, 3, 5, 300 K; 51
curve 3: 6,0, 1, 3,5, 150 K; L
curve 4: 6, 0,1, 3, 5, 150 K.
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and driving force (free energy of the transition) simul-
taneously.

It is worth noting that, in the traditional Marcus
theory [26] with temperature independent parameters,
the weak temperature dependence of the reaction rate
constant would require small values of the reorganiza-
tion energy. However, this would lead to a rather early
onset of the inverted region with a rather small interval
of the variation of the rate constant with the driving
force (see curve 1 in Fig. 4). On the other hand,
according to the results above, rather strong variation in
the electron tunneling (if coupled with a high-frequency
promoting mode) with the driving force reveals only
slight temperature dependence (see curves 2 and 3 in
Fig. 4). Moreover, the reaction rate constant is
approximately independent of the free energy of the
transition in a rather broad region where the driving
force is larger than the reorganization energy, which
may explain the failure to observe the inverted region in
[27]. It should be emphasized that curves 2 and 3 in
Fig. 4 were plotted with temperature independent
parameters and they show normal temperature behavior
of the reaction rate constant (a decrease with tempera-
ture). Therefore, the effect of the promoting mode alone
cannot explain all of the tendencies observed experi-
mentally. However, the assumption of a slight change of
the parameters with temperature can improve the qual-
itative agreement. For example, a shift of the driving
forces by 50 meV can alter the order of curves 2 and 3 in
Fig. 4 (see curve 4) in accordance with the experimental
observations.

It is worth emphasizing that all of the effects dis-
cussed here are due to the electron coupling with the
promoting modes, unlike in most other works in the field
(except those mentioned above), where non-Condon
effects due to the electron coupling to non-symmetric

AF /KT

modes were considered. The approach presented here is
applicable to electron transfer processes in various sys-
tems, solid matrices, and liquid solutions, as well as
biological macromolecules.
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